

CALIBRATION OF A MANURE SPREADER USING THE LOAD-AREA METHOD (WITH ESTIMATION OF DENSITY AND LOAD WEIGHT)

Introduction

Calibration is a way of checking and/or adjusting a manure spreader to ensure that a nutrient source is being applied uniformly and at the desired rate. It is important to properly calibrate a manure spreader to minimize the potential for over- or under-applying nutrients to your crops.

The load-area method is a reliable method of calibrating manure spreaders when using solid and semi-solid manure. This method requires knowledge of the spreader capacity. It involves spreading several loads with the spreader filled to capacity, using the same spreader settings and tractor speed. The area spread (which we will refer to as the *application area* for the rest of this publication) is then measured for each load, and the application rate for each application area is calculated. The average application rate for all loads is then projected to a per-acre basis.

Manure application rates across a field for some types of spreaders can be quite variable even at the same ground speed and with identical equipment settings. Multiple measurements of actual application rates are required to ensure that the calculated average rate is truly representative of the average rate across the field.

NOTE: A minimum of three measurements is recommended for the load-area method of calibration.

Before continuing, determine the spread pattern of the spreader. For some box spreaders, the swath width is the width of the spreader. For spinner spreaders and spreaders with vertical beaters, material is spread for some distance on each side of the spreader and the *effective swath width* must be determined to maximize application uniformity. Consult EC-1, "Calibration of Manure Spreaders: Uniformity, Spread Patterns and Effective Swath Width," in the *Soil Fertility Guide* series for information.

Weather Conditions	It is important to take note of the weather conditions before conducting a calibration. If the weather is windy or rainy, it would be a good idea to reschedule the spreader calibration for a different day as both of these conditions can affect the accuracy of your measurements.
Using the Load-area Method	 The following equipment is needed to perform the load-area method of calibration: 5-gallon bucket tape measure and/or measuring wheel scale (with a capacity of 50 pounds and accuracy to a tenth of a pound) equipment manual or University of Maryland Extension (UME) Fact Sheet 176, "Determining the Amount of Manure in a Pile or a Pool"
	The steps for using the load-area method of calibration are as follows:
	Step 1 . Make note of equipment settings using the information at the top of the worksheet on page 6 as a guide for the kind of information you want to track. Record these settings on the top of the worksheet.
	In addition to recording equipment settings, use the worksheet to record calibration data. Calculations used in the load-area method are provided on the worksheet.
	 Step 2. Calculate the density of the manure in pounds per cubic feet. a) Weigh an empty 5-gallon bucket. Record the weight in pounds on line A1 of the worksheet. b) Fill a 5-gallon bucket with manure, level to the top. Pack the manure to the same density as in the spreader. Weigh the bucket filled with manure and record the weight in pounds on line A2 of the worksheet under bucket 1. c) Repeat Step 2(b) two more times and record the weights of the manure-filled buckets in pounds on line A2 of the worksheet under bucket 2 and bucket 3. d) Calculate the total weight of manure for each bucket in pounds. Enter the values on line A3 of the worksheet under bucket 1, bucket 2, and bucket 3. e) Calculate the average weight of manure in pounds. Enter the value on line A4 of the worksheet. f) Calculate the average density of manure in pounds per cubic feet. Enter the value on line A5 of the worksheet.
	Step 3. Calculate the volume of the manure spreader in cubic feet.
	To determine the volume of the manure spreader, consult the equipment manual or refer to University of Maryland Extension Fact Sheet 176, "Determining the Amount of Manure in a Pile or a Pool," for an explanation of how to determine manure spreader volume. Record any volume calculations and keep with your calibration worksheets. Enter the value on line B1 of the worksheet.

Step 4. Calculate the weight of the manure in the spreader in pounds. Enter the value on line **C1** of the worksheet.

Step 5. Spread a load of manure on the desired field. If possible, spread the manure in a rectangle or square for easier calculation of the area treated. Use the effective swath width that you have previously determined is necessary to maximize application uniformity (refer to EC-1, "Calibration of Manure Spreaders: Uniformity, Spread Patterns and Effective Swath Width").

Step 6. Measure the length and width of the application area in feet and enter the values on lines **D1** and **D2**, respectively, of the worksheet.

Step 7. Calculate the application area in square feet. Enter the value on line **D3** of the worksheet.

Step 8. Calculate the application rate in pounds per square feet. Enter the value on line **E1** of the worksheet.

Step 9. Convert the application rate to tons per acre. Enter the value on line E2 of the worksheet.

Step 10. Repeat Steps 5 through 9 for two more loads of manure.

Step 11. Calculate the average application rate in tons per acre. Enter the value on line **E3** of the worksheet.

NOTE: If a large difference in application rates between loads is noticed and can be attributed to equipment malfunction, do not include that rate in the average.

If the current application rate is different from the recommended application rate, adjust the settings on the manure spreader or change your driving speed to increase or decrease the application rate, as needed. Repeat the calibration procedure until you identify the tractor speed and manure spreader settings that will enable you to approximate the recommended application rate. Maryland Department of Agriculture (MDA) policy requires that the average application rate should be within 10% of the recommended rate.

Two copies of the worksheet are included so all data for each calibration attempt can be recorded.

Recalibrating the Spreader	For manure spreaders handling solid or semi-solid manures, recalibrate whenever the consistency of a manure is different from the manure used for the last calibration. Consistency of manure can vary due to changes in any of the following:				
	 bedding feed components manure management practices any factor that affects the moisture content of manure 				
	Application rates change over time as equipment gets older and components wear. Periodic recalibration of equipment is encouraged even if all factors appear to be similar.				
Record Keeping	Keep calibration worksheets and nutrient application records with your nutrient management plan. This information will be needed in the event that MDA conducts a plan implementation review.				
References	 Brodie, H. L. 1990. <i>Determining the Amount of Manure in a Pile or a Pool</i>. Fact Sheet 176. University of Maryland Extension, Department of Biological Resources Engineering, College Park, MD 20742. Brodie, H. L. and G. L. Smith. 1993. <i>Calibrating Manure Spreaders</i>. Fact Sheet 419. University of Maryland Extension. Maryland Institute for Agriculture and Natural 				
	Resources, College Park, MD 20742.				
Prepared By	Heather Hutchinson Nutrient Management Specialist Agricultural Nutrient Management Program Department of Environmental Science and Technology				
	Patricia Steinhilber Program Coordinator Agricultural Nutrient Management Program Department of Environmental Science and Technology				
	Jennifer Salak Communications Coordinator Agricultural Nutrient Management Program Department of Environmental Science and Technology				

Review Team	Lief Eriksen and Paul Shipley Nutrient Management Specialists
	Agricultural Nutrient Management Program
	Department of Environmental Science and Technology
	Department of Environmental Science and Teenhology
	Keith Potter, Bryan Harris, Dan Schwaninger and Howard Callahan
	Nutrient Management Specialists
	Maryland Nutrient Management Program
	Maryland Department of Agriculture
	Jo Mercer
	Training Coordinator, Maryland Nutrient Management Program
	Maryland Department of Agriculture
Cooperating	University of Maryland College of Agriculture and Natural Resources
Agencies'	Agricultural Nutrient Management Program
Contact	Department of Environmental Science and Technology
Information	0116 Symons Hall
	College Park, MD 20742
	(301) 405-1319
	www.anmp.umd.edu
	Maryland Department of Agriculture
	Nutrient Management Program
	50 Harry S Truman Parkway
	Annapolis, MD 21401
	(410) 841-5959
	www.mda.state.md.us
	June 2010

EC-5 in the Soil Fertility Guide series.

The *Soil Fertility Guide* series is written and produced by the University of Maryland College of Agriculture and Natural Resources and funded by the Maryland Department of Agriculture.

WORKSHEET EC-5, "Calibration of a Manure Spreader Using the Load-area Method (with Estimation of Density and Load Weight)"

Tractor	Spreader model		Ground speed		
Gear	Gate setting		PTO	_ PTO	
Apron chain setting	Other	Date	e of spreader calibrat	tion	
(A) calculation of manu	re density (lbs/cu ft)				
A1) weight of 5-ga	illon bucket (lbs)				
		bucket 1	bucket 2	bucket 3	
A2) weight of mar	ure and bucket (lbs)				
A3) total weight of (A2 - A1 = A3	⁻ manure (lbs))	(a)	(b)	(c)	
A4) average weig (see line A3) ([(a) + (b) + (c	ht of manure (lbs))] / 3 = A4)				
where 3 = number of b	uckets				
A5) manure densi (A4 / 0.667 = 4	ty (lbs/cu ft) A5)				
where volume of a 5-g	allon bucket = 0.667 cubic feet				
B) calculation of sprea	der volume (cu ft)				
B1) spreader volu (Refer to equipme for auidance.)	me (cu ft) nt manual or UME Fact Sheet 176	5			
(C) calculation of manu	re weight in spreader (lbs)				
C1) manure weigh (A5 x B1 = C1	it in spreader (lbs))				
D) calculation of applic	ation area (sq ft)	I]	
		application area 1	application area 2	application area 3	
D1) length of appl	ication area (ft)				
D2) width of applic	cation area (ft)				
D3) application are (D1 x D2 = D3)	ea (sq ft)				
E) calculation of avera	ge application rate (t/ac)				
E1) application rat (C1 / D3 = E1)	e (lbs/sq ft)				
E2) application rat ([E1 x 43,560]	e (t/ac) / 2,000 = E2)	(d)	(e)	(f)	
where 1 acre = 43,560 1 ton = 2,000 pounds	square feet and				
E3) average applie (see line E2)	cation rate (t/ac)				
([(a) + (e) + (f)	j / 3 = E3)				
where 3 = number of lo	ads		_		

WORKSHEET EC-5, "Calibration of a Manure Spreader Using the Load-area Method (with Estimation of Density and Load Weight)"

Tractor	Spreader model		Ground speed	l
Gear Gate setting		PTO		
Apron chain settin	g Other	Date	e of spreader calibrat	ion
(A) calculation of	manure density (lbs/cu ft)			
A1) weight o	f 5-gallon bucket (lbs)			
		bucket 1	bucket 2	bucket 3
A2) weight o	f manure and bucket (lbs)			
A3) total wei (A2 - A1	ght of manure (lbs) = A3)	(a)	(b)	(c)
A4) average (see line ([(a) + (b	weight of manure (lbs) A3)) + (c)] / 3 = A4)		1	
where 3 = numb	er of buckets			
A5) manure ((A4 / 0.6)	density (lbs/cu ft) 67 = A5)			
where volume o	f a 5-gallon bucket = 0.667 cubic feet			
B) calculation of	spreader volume (cu ft)			
B1) spreader (Refer to ec for guidance	⁻ volume (cu ft) quipment manual or UME Fact Sheet 176 e.)			
C) calculation of	manure weight in spreader (lbs)			
C1) manure (A5 x B1	weight in spreader (lbs) = C1)			
D) calculation of	application area (sq ft)]
		application area 1	application area 2	application area 3
D1) length of	application area (ft)			
D2) width of	application area (ft)			
D3) application (D1 x D2	on area (sq ft) = D3)			
E) calculation of a	average application rate (t/ac)			
E1) applicatio (C1 / D3	on rate (lbs/sq ft) = E1)			
E2) applicatio ([E1 x 43	on rate (t/ac) , 560] / 2,000 = E2)	(d)	(e)	(f)
where 1 acre = 4 1 ton = 2,000 po	13,560 square feet and unds			
E3) average (see line	application rate (t/ac) E2)			
([(a) + (e)	(1) + (1) / 3 = E3)			
where 3 = numb	er of loads			