

ENVIRONMENTAL SCIENCE AND TECHNOLOGY • H.J. PATTERSON HALL • COLLEGE PARK, MD 20742 PHONE (301) 405-1351 • FAX (301) 314-2763 • MCGRATHJ@UMD.EDU

Soil Fertility Management

SFM-3 August 1996

DESCRIPTIONS OF THE SOIL TEST INTERPRETIVE CATEGORIES USED BY THE UNIVERSITY OF MARYLAND SOIL TESTING LABORATORY

The University of Maryland Cooperative Extension Service Soil Testing Laboratory generates numerical values, or soil test results, that historically have been grouped into five broad categories that describe the relative crop availability of a given nutrient: "Very Low," "Low," "Medium," "High," and "Very High." These five categories have been reorganized into four categories and renamed as follows: "Low," "Medium," "Optimum," and "Excessive."

Descriptions of the soil test interpretive categories are presented below. These categories describe the relative crop availability of a given nutrient and the expected response from application of that nutrient.

Low: The nutrient concentration in the soil is inadequate for optimum growth of most crops and will very likely limit plant growth and yield. There is a high probability of a favorable economic response to additions of nutrients.

Medium: The nutrient concentration in the soil may or may not be adequate for optimum growth of most crops and plant growth and yield may or may not be limited. There is a low to moderate probability of a favorable economic response to additions of the nutrient.

Optimum: The nutrient concentration in the soil is adequate for optimum growth of most crops. There is a

very low probability of a favorable economic response to additions of the nutrient.

Excessive: The nutrient concentration in the soil is more than adequate for optimum growth of most crops. Nutrient additions will be unprofitable and may have undesirable effects on growth of some crops. Erosion and runoff from soils that are excessive in phosphorus may have negative impacts on surface water quality.

Historically, numerical soil test values have been presented in units of "pounds per acre" of soil test nutrient. An alternative method for expressing the relative level of plant available nutrient measured by soil testing uses "soil fertility index values." Soil fertility index values comprise a continuous relative scale where the highest soil nutrient concentration within the "optimum" range is set equal to a fertility index value of 100.

The numerical values that define the five old soil test categories and the four new soil test categories are presented in Table 1, on page 2. Conversion from the old "pounds per acre" scale to the new soil fertility index values is easily accomplished by following the conversion sequences described in Table 2, also on page 2.

Solutions in your community

Issued in furtherance of Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, University of Maryland, College Park, and local governments. Cheng-i Wei, Dean and Director of University of Maryland Extension.

The University of Maryland is equal opportunity. The University's policies, programs, and activities are in conformance with pertinent Federal and State laws and regulations on nondiscrimination regarding race, color, religion, age, national origin, gender, sexual orientation, marital or parental status, or disability. Inquiries regarding compliance with Title VI of the Civil Rights Act of 1964, as amended; Title IX of the Educational Amendments; Section 504 of the Rehabilitation Act of 1973; and the Americans With Disabilities Act of 1990; or related legal requirements should be directed to the Director of Human Resources Management, office of the Dean, College of Agriculture and Natural Resources, Symons Hall, College Park, MD 20742.

Table 1. Numerical values for Mehlich 1 soil test nutrients, expressed as the traditional lbs/A and as fertility index values that define the old "Very Low," "Low," "Medium," "High," and "Very High" soil test categories and the new "Low," "Medium," "Optimum," and "Excessive" soil test categories.

Soil Test Categories							
"old" >	Very Low	Low	Medium	High	Very High		
"new" >		Low	Medium	Optimum	Excessive		
Phosphorus							
lbs/A P2O5	0 - 29	30 - 61	62 - 102	103 - 205	> 205		
Index Value		0 - 25	26 - 50	51 - 100	> 100		
Potassium							
lbs/A K2O	0 – 35	36 - 84	85 - 160	161 - 320	> 320		
Index Value		0 - 25	26 - 50	51 - 100	> 100		
Magnesium							
lbs/A Mg	0 – 35	36 - 70	71 - 124	125 - 265	> 265		
Ũ							
Index Value		0 - 25	26 - 50	51 - 100	> 100		
Calcium							
lbs/A Ca		0 - 429	430 - 860	861 - 1720	> 1720		
Index Value		0-25	26 - 50	51 - 100	> 100		

Table 2. Conversion sequences for converting between "pounds per acre" of soil test nutrient and soil fertility index values.

To convert from "pounds per acre"			To convert from soil fertility index value
of soil test nutrient to soil fertility			to "pounds per acre" of soil test nutrient,
index value, multiply "pounds per			subtract the value in Column 2 from the
acre" by the value in Column 1 and	Column	Column	soil fertility index value and then divide
then add the value in Column 2.	1	2	by the value in Column 1.
P_2O_5 , lbs/A, pounds per acre	0.499	(-2.327)	P fertility index value
K_2O , lbs/A, pounds per acre	0.314	(-0.439)	K fertility index value
Mg, lbs/A, pounds per acre	0.382	0.271	Mg fertility index value
Ca, lbs/A, pounds per acre	0.058	0.403	Ca fertility index value

Prepared by: Frank J. Coale Soil Fertility/Nutrient Management Specialist Department of Natural Resource Sciences and Landscape Architecture